8 research outputs found

    Variance of spectral entropy (VSE): an SNR estimator for speech enhancement in hearing aids

    Get PDF
    In everyday situations an individual can encounter a variety of acoustic environments. For an individual with a hearing aid following speech in different types of background noise can often present a challenge. For this reason, estimating the signal-to-noise ratio (SNR) is a key factor to consider in hearing-aid design. The ability to adjust a noise reduction algorithm according to the SNR could provide the flexibility required to improve speech intelligibility in varying levels of background noise. However, most of the current high-accuracy SNR estimation methods are relatively complex and may inhibit the performance of hearing aids. This study investigates the advantages of incorporating a spectral entropy method to estimate SNR for speech enhancement in hearing aids; in particular a variance of spectral entropy (VSE) measure. The VSE approach avoids some of the complex computational steps of traditional statistical-model based SNR estimation methods by only measuring the spectral entropy among frequency channels of interest within the hearing aid. For this study, the SNR was estimated using the spectral entropy method in different types of noise. The variance of the spectral entropy in a hearing-aid model with 10 peripheral frequency channels was used to measure the SNR. By measuring the variance of the spectral entropy at input SNR levels between -10 dB to 20 dB, the relationship function between the SNR and the VSE was estimated. The VSE for the speech-in-noise was measured at temporal intervals of 1.5s. The VSE method demonstrates a more reliable performance in different types of background noise, in particular for low-number of speakers babble noise when compared to the US National Institute of Standards and Technology (NIST) or Waveform Amplitude Distribution Analysis (WADA) methods. The VSE method may also reduce additional computational steps (reducing system delays) making it more appropriate for implementation in hearing aids where system delays should be minimized as much as possible

    5G Uniform linear arrays with beamforming and spatial multiplexing at 28 GHz, 37 GHz, 64 GHz and 71 GHz for outdoor urban communication: A two-level approach

    Get PDF
    Multiple-input multiple-output (MIMO) spatial multiplexing and beamforming are regarded as key technology enablers for the fifth-generation (5G) millimeter wave (mmWave) mobile radio services. Spatial multiplexing requires sufficiently separated and incoherent antenna array elements, while in the case of beamforming, the antenna array elements need to be coherent and closely spaced. Extensive 28-, 60-, and 73-GHz ultra-wideband propagation measurements in cities of New York City and Austin have indicated formation of two or more spatial lobes for the angles-of-departure and angles-of-arrival even for line-of-sight (LOS) transmission, which is an advantageous feature of mmWave channels, indicating that the transmitting and receiving array antenna elements can be co-located, thus enabling a single architecture for both spatial multiplexing and beamforming. In this paper, a two-level beamforming architecture for uniform linear arrays is proposed that leverages the formation of these spatial lobes. The antenna array is composed of sub-arrays, and the impact of sub-array spacing on the spectral efficiency is investigated through simulations using a channel simulator named NYUSIM developed based on extensive measured data at mmWave frequencies. Simulation results indicate spectral efficiencies of 18.5–28.1 bits/s/Hz with a sub-array spacing of 16 wavelengths for an outdoor mmWave urban LOS channel. The spectral efficiencies obtained are for single-user (SU) MIMO transmission at the recently allocated 5G carrier frequencies in July 2016. The method and results in this paper are useful for designing antenna array architectures for 5G wireless systems

    A CMOS current driver with built-in common-mode signal reduction capability for EIT

    Get PDF
    This paper presents an integrated fully differential current driver for wearable multi-frequency electrical impedance tomography (EIT). The integrated circuit (IC) comprises a wideband current driver (up to 500 kHz) functioning as the master for current sourcing, and a differential voltage receiver with common-mode feedback configuration as the slave for current sinking. The IC is fabricated in a 0.18-µm CMOS technology. It operates from ±1.65 V power supplies and occupies a total die area of less than 0.05 mm2 . The current driver has a measured output impedance of 750 kΩ at 500 kHz and provides a common-mode signal reduction of 32 dB at 500 kHz. The application of the IC in a wearable EIT lung monitoring system is presented

    Effect of nerve variations on the stimulus current level in a wearable neuromodulator for migraine: A modeling study

    Get PDF
    Migraine is a socioeconomic burden, whose pharmaceutical and invasive treatment methods may have troublesome side-effects. A wearable neuromodulator targeting frontal nerve branches of trigeminal nerve may provide an effective solution to suppress or treat migraine. Such solutions have had limited efficacies. In this paper, using computational models, the relationship of this lack of efficacy to some neural variations is investigated. The results indicate that due to neuro-anatomic variations, different current levels may be required to achieve a sufficient level of neural stimulation. Thus, an optimized design should consider such variations across the patient group

    Design of sEMG assembly to detect external anal sphincter activity: a proof of concept

    Get PDF
    Objective: Conditional trans-rectal stimulation of the pudendal nerve could provide a viable solution to treat hyperreflexive bladder in spinal cord injury. A set threshold of the amplitude estimate of the external anal sphincter surface electromyography (sEMG) may be used as the trigger signal. The efficacy of such a device should be tested in a large scale clinical trial. As such a probe should remain in situ for several hours while patients attend to their daily routine, the recording electrodes should be designed to be large enough to maintain good contact while observing design constraints. The objective of this study was to arrive at a design for intra-anal sEMG recording electrodes for the subsequent clinical trials while deriving the possible recording and processing parameters. 
 Approach: Having in mind existing solutions and based on theoretical and anatomical considerations, a set of four multi-electrode probes were designed and developed. These were tested in a healthy subject and the measured sEMG traces were recorded and appropriately processed.
 Main results: It was shown that while comparatively large electrodes record sEMG traces that are not sufficiently correlated with the external anal sphincter contractions, smaller electrodes may not maintain a stable electrode tissue contact. It was shown that 3 mm wide and 1 cm long electrodes with 5 mm inter-electrode spacing, in agreement with Nyquist sampling, placed 1 cm from the orifice may intra-anally record a sEMG trace sufficiently correlated with external anal sphincter activity.
 Significance: The outcome of this study can be used in any biofeedback, treatment or diagnostic application where the activity of the external anal sphincter sEMG should be detected for an extended period of time
    corecore